939 research outputs found

    Universality of ac-conduction in anisotropic disordered systems: An effective medium approximation study

    Full text link
    Anisotropic disordered system are studied in this work within the random barrier model. In such systems the transition probabilities in different directions have different probability density functions. The frequency-dependent conductivity at low temperatures is obtained using an effective medium approximation. It is shown that the isotropic universal ac-conduction law, σlnσ=u\sigma \ln \sigma=u, is recovered if properly scaled conductivity (σ\sigma) and frequency (uu) variables are used.Comment: 5 pages, no figures, final form (with corrected equations

    Anisotropic dielectric function in polar nano-regions of relaxor ferroelectrics

    Get PDF
    The paper suggests to treat the infrared reflectivity spectra of single crystal perovskite relaxors as fine-grained ferroelectric ceramics: locally frozen polarization makes the dielectric function strongly anisotropic in the phonon frequency range and the random orientation of the polarization at nano-scopic scale requires to take into account the inhomogeneous depolarization field. Employing a simple effective medium approximation (Bruggeman symmetrical formula) to dielectric function describing the polar optic modes as damped harmonic oscillators turns out to be sufficient for reproducing all principal features of room temperature reflectivity of PMN. One of the reflectivity bands is identified as a geometrical resonance entirely related to the nanoscale polarization inhomogeneity. The approach provides a general guide for systematic determination of the polar mode frequencies split by the inhomogeneous polarization at nanometer scale.Comment: 5 pages, 2 figure

    Effective Elastic Moduli in Solids with High Crack Density

    Get PDF
    We investigate the weakening of elastic materials through randomly distributed circles and cracks numerically and compare the results to predictions from homogenization theories. We find a good agreement for the case of randomly oriented cracks of equal length in an isotropic plane-strain medium for lower crack densities; for higher densities the material is weaker than predicted due to precursors of percolation. For a parallel alignment of cracks, where percolation does not occur, we analytically predict a power law decay of the effective elastic constants for high crack densities, and confirm this result numerically.Comment: 8 page

    Spectral Representation for the Effective Macroscopic Response of a Polycrystal: Application to Third-Order Nonlinear Susceptibility

    Full text link
    Erratum: In our paper, we show that the spectral representation for isotropic two-component composites also applies to uniaxial polycrystals. We have learned that this result was, in fact, first conjectured by G.W. Milton. While our derivation is more detailed, our result for the spectral function is the same as Milton's. We very much regret not having been aware of this work at the time of writing our paper. Original abstract: We extend the spectral theory used for the calculation of the effective linear response functions of composites to the case of a polycrystalline material with uniaxially anisotropic microscopic symmetry. As an application, we combine these results with a nonlinear decoupling approximation as modified by Ma et al., to calculate the third-order nonlinear optical susceptibility of a uniaxial polycrystal, assuming that the effective dielectric function of the polycrystal can be calculated within the effective-medium approximation.Comment: v2 includes erratum and the original preprin

    British Bryological Society expedition to Mulanje Mountain, Malawi : 13., new and other unpublished records

    Get PDF
    Further results are provided of the 1991 British Bryological Society Expedition to Mulanje Mt., Malawi including 168 taxa of bryophyte, comprising 72 taxa of liverwort (38 new to Malawi) and 96 taxa of mosses (45 new to Malawi)

    A Superlens Based on Metal-Dielectric Composites

    Full text link
    Pure noble metals are typically considered to be the materials of choice for a near-field superlens that allows subwavelength resolution by recovering both propagating and evanescent waves. However, a superlens based on bulk metal can operate only at a single frequency for a given dielectric host. In this Letter, it is shown that a composite metal-dielectric film, with an appropriate metal filling factor, can operate at practically any desired wavelength in the visible and near-infrared ranges. Theoretical analysis and simulations verify the feasibility of the proposed lens.Comment: 15 pages, 4 figure

    Self consistent determination of plasmonic resonances in ternary nanocomposites

    Full text link
    We have developed a self consistent technique to predict the behavior of plasmon resonances in multi-component systems as a function of wavelength. This approach, based on the tight lower bounds of the Bergman-Milton formulation, is able to predict experimental optical data, including the positions, shifts and shapes of plasmonic peaks in ternary nanocomposites without using any ftting parameters. Our approach is based on viewing the mixing of 3 components as the mixing of 2 binary mixtures, each in the same host. We obtained excellent predictions of the experimental optical behavior for mixtures of Ag:Cu:SiO2 and alloys of Au-Cu:SiO2 and Ag-Au:H2 O, suggesting that the essential physics of plasmonic behavior is captured by this approach.Comment: 7 pages and 4 figure

    Plasmon tunability in metallodielectric metamaterials

    Get PDF
    The dielectric properties of metamaterials consisting of periodically arranged metallic nanoparticles of spherical shape are calculated by rigorously solving Maxwell's equations. Effective dielectric functions are obtained by comparing the reflectivity of planar surfaces limiting these materials with Fresnel's formulas for equivalent homogeneous media, showing mixing and splitting of individual-particle modes due to inter-particle interaction. Detailed results for simple cubic and fcc crystals of aluminum spheres in vacuum, silver spheres in vacuum, and silver spheres in a silicon matrix are presented. The filling fraction of the metal f is shown to determine the position of the plasmon modes of these metamaterials. Significant deviations are observed with respect to Maxwell-Garnett effective medium theory for large f, and multiple plasmons are predicted to exist in contrast to Maxwell-Garnett theory.Comment: 6 pages, 4 figure

    Optical conductivity of a granular metal at not very low temperatures

    Full text link
    We study the finite-temperature optical conductivity, sigma(omega,T), of a granular metal using a simple model consisting of a array of spherical metallic grains. It is necessary to include quantum tunneling and Coulomb blockade effects to obtain the correct temperature dependence of sigma(omega, T), and to consider polarization oscillations to obtain the correct frequency dependence. We have therefore generalized the Ambegaokar-Eckern-Schoen (AES) model for granular metals to obtain an effective field theory incorporating the polarization fluctuations of the individual metallic grains. In contrast to the DC conductivity, which is determined by inter-grain charge transfer and obeys an Arrhenius law at low temperature, the AC conductivity is dominated by a resonance peak for intra-grain polarization oscillations, which has a power-law tail at low frequencies. More importantly, although the resonance frequency agrees with the classical prediction, the resonance width depends on intergrain quantum tunneling and Coulomb blockade parameters, in addition to the classical Drude relaxation within the grain. This additional damping is due to inelastic cotunneling of polarization fluctuations to neighbouring grains and it qualitatively differs from the DC conductivity in its temperature dependence quite unlike the expectation from Drude theory.Comment: Added figures, published version, 16 pages, REVTe

    Effective conductivity in association with model structure and spatial inhomogeneity of polymer/carbon black composites

    Full text link
    The relationship between effective conductivity and cell structure of polyethylene/carbon composites as well as between effective conductivity and spatial distribution of carbon black are discussed. Following Yoshida's model both structures can, in a way, be said to be intermediate between the well known Maxwell-Garnett (MG) and Bruggeman (BR) limiting structures. Using TEM photographs on composites with various carbon blacks we have observed that the larger is Garncarek's inhomogeneity measure H of two-dimensional (2D) representative distribution of the carbon black, the smaller is the effective conductivity of the composite.Comment: 7 pages, 9 figure
    corecore